

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

The Perils of Treating Software as a
Specialty Engineering Discipline

During our support of various acquisition programs within the U.S. Department
of Defense (DoD), the authors have observed that system development methods
employed by acquisition program offices and by contractors tend to insufficient-
ly engage key software domain experts during the initial synthesis of require-
ments and systems architectures. A key characteristic of utilizing such methods
often results in a physical or hardware-centric design focus during the earliest
phases of a program. We have observed programs encounter difficulties that we
believe are attributable to design approaches that underemphasize software engi-
neering concerns during the early formulation of system requirements and archi-
tecture. We have also observed specialty engineering disciplines (i.e., safety,
security, reliability, etc.) receive similar treatment. The topic of our paper is cer-
tainly not new, but we continue to observe problematic reoccurrence as more and
more systems are being acquired that increasingly rely on software to accom-
plish mission-critical goals.

We present our position and opinions on this topic for leadership consideration,
primarily within the government program management community. We summa-
rize a few examples of representative difficulties that we believe have been in-
troduced by design approaches that under-represent software engineering con-
siderations in the early life cycle program phases. We conclude with some
recommendations to help achieve a closer coupling of design methods across the
various engineering disciplines that we believe can assist in reducing the overall
risks during acquisition and development of software-reliant systems.

INTRODUCTION
 Historically, our experience with DoD programs that acquire software-reliant
systems illustrates that software engineering concerns are often sources of diffi-
culty during integration.

Keith Korzec
Thomas Merendino

April 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 JAN 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
The Perils of Treating Software as a Specialty Engineering Discipline

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Merendino /Keith Korzec Tom

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon Software Engineering Institute, 4500 Fifth Ave,
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This topic is certainly not new.1,2 Our recent engagements supporting acquisition
programs drive us to conclude that much improvement is still needed to effi-
ciently develop the growing number of acquired systems that rely on greater
amounts of software to accomplish mission critical goals.

OBSERVATIONS

Exclusion of software disciplines

A key factor underlying these difficulties may be related to the delayed participa-
tion and exclusion of people with software engineering architectural and devel-
opment skills from the Systems Engineering Integration and Test (SEIT) team.
Specific organizational structures vary from program to program. However, we
have observed that software expertise generally resides in one or more integrated
product teams (IPTs) other than the SEIT. This segregation typically exists with-
in both the program office and contractor organizations. From this aspect, the
software engineering discipline, to its detriment, operates in a manner similar to
the specialty engineering disciplines in terms of relatively separated roles and
delayed participation in the overall requirements, architecture and design of large
systems.

The high level structure of the system/segment “nodes” tend to bear a marked
resemblance to the organizational structure of the SEIT and product development
IPTs, which is a common occurrence described by Conway’s Law.3 The term
“nodes” is used here to mean a grouping of system hardware and software whose

1 Grady Campbell. Reconsidering the Role of Systems Engineering in DoD
Software Problems. SEI presentation. January 2004.
http://www.sei.cmu.edu/library/abstracts/presentations/campbelljan2004.cfm
(accessed March 2012)
2 NDIA Task Group Report. Top Software Engineering Issues within Department
of Defense and Defense Industry. September 2006. (See issue #2 in this report,
excerpt of which is reproduced in the Appendix below)
3 Melvin E. Conway. “How Do Committees Invent?” Datamation Magazine.
F. D. Thompson Publications, April 1968.
http://www.melconway.com/Home/Committees_Paper.html

2 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

implementation is intended to provide major piece(s) of functionality. The struc-
ture of a system’s nodes is usually determined in conjunction with system func-
tional decomposition decisions. These key decisions are typically made by the
SEIT very early in an acquisition program’s life cycle. In order to achieve total
life-cycle system planning, the SEIT must include all engineering domains.

Design decisions not coordinated

By the time such a system decomposition structure is formed, many important
system design decisions (intended and unintended, documented and undocu-
mented) are made. Some of these design decisions are likely to be cross-cutting
in nature, strongly suggesting that coordinated design decisions are needed
across multiple IPTs to realize system intent and to avoid unintended deviations.
For example, a satellite system decomposition that defines a space segment and a
ground segment can cause functions that are common across both segments, such
as data analysis, system health, common operating picture/situational awareness,
mission planning, etc.to be split between IPTs. These decomposition decisions
will be subsequently inherited (knowingly or unknowingly) by the IPTs as con-
straints on the development and implementation of their assigned nodes.

During system development activities, we typically observe that IPTs perform
their work largely autonomously. Their focus is on implementing the contractual
product requirements that have been “flowed” to their assigned system or seg-
ment nodes. Additionally, these teams are influenced by strong schedule-driven
incentives that intensify the teams’ internal development and delivery focus.

In this setting, cross-cutting design decisions, made autonomously by individual
IPTs, can significantly impact other IPTs and/or the system as a whole. Typical-
ly, such interrelated decisions are discovered late into design activities. By the
time these are discovered, budget, schedule and IPT egos often result in re-
sistance to revisiting and coordinating design decisions with other IPTs.

Inter-IPT collaboration, cooperation and negotiation are often the primary means
by which such cross-cutting concerns are addressed. We have observed a variety
of ways in which specific programs manage the oversight of inter-IPT collabora-
tions. For example, some programs appoint the SEIT to have these responsibili-
ties. Others may assign these activities to a separate team of architects. At the
opposite end of the management spectrum, others may decide not to recognize
this as an issue. Absent a very strong authority having oversight of these collabo-
rations, the process has been seen to result in IPT decisions that are in the best
interests of one IPT but may not be optimal for the overall system. This increases
difficulty in management and control of the ongoing system development and is
exacerbated further in programs with larger numbers of IPTs.

3 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

Hardware equals system

Additionally, we often observe hardware and systems engineering disciplines
treated as being synonymous within programs, whereas each is really its own
unique domain specialty. As a result of this treatment, hardware engineering is
considered the lead engineering domain involved with making early, important
system architecture decisions, with all other domains relegated to a supporting
role later on. However, systems architectures that adequately address the con-
cerns of software engineering, as well as those from other engineering disci-
plines, are more likely to result when systems engineering activities are per-
formed early in a program’s life cycle using iterative and collaborative
interactions among the various domains of expertise.4,5 Additionally, it is worth
noting that the Department of Defense’s Technology Readiness Assessment
(TRA) Deskbook6 recognizes the importance of considering software in the sys-
tem level context by defining both hardware and software Technology Readiness
Levels (TRLs) as well as by emphasizing the importance for programs to identi-
fy software among the system’s Critical Technology Elements (CTEs) during the
TRA process.

Emphasis on developing code

We have also seen that the software design and coding activities are frequently
viewed as being the bulk of software engineering activities needed within the
development of a system. This would be analogous to saying that the design and
production of the physical hardware are the only hardware engineering activities
needed within the development of a system. For hardware, it is well understood
that significant systems engineering, hardware architecture, design and prototyp-
ing efforts are needed before any component can be formally designed and pro-
duced. For software-reliant systems, however, as much if not more effort is
needed to make key architecture decisions at the system level that directly im-
pact and guide subsequent software development activities. Software needs the

4 Grady Campbell. Reconsidering the Role of Systems Engineering in DoD Soft-
ware Problems. SEI Presentation. January 2004.
http://www.sei.cmu.edu/library/abstracts/presentations/campbelljan2004.cfm
(accessed March 2012)
5 Donald Firesmith, et al. Method Framework for Engineering System Architec-
tures. Taylor & Francis, 2009
6 Office of the Director, Defense Research & Engineering (DDR&E). Technology
Readiness Assessment Deskbook, US Department of Defense. July 2009

4 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

same level of systems considerations afforded to hardware engineering before
the “manufacturing” of code starts in earnest.

Program success depends on software

Further complicating the situation, systems that are reliant on millions of lines of
software code will end up with a system where software becomes ubiquitous.
Greater amounts of complex system behavior and risk mitigation are dependent
on successfully developing and integrating software. It is our position that in-
creased participation by key software engineers and architects during the early
systems requirements and architecture activities is one of the key approaches to
help reduce schedule and cost risks. Depending upon the program, software par-
ticipation could begin as early as the Capabilities Based Assessment (CBA).

SOME EXAMPLES
In this section, we describe a few examples of representative difficulties that sys-
tems development teams encounter when following development methods that
separate and/or delay engagement of software engineering domain experts during
the early phases of system development.

It is of interest to the authors to note that such development methods frequently
delay and/or separate engagement by specialty engineering domain experts (e.g.
safety, reliability) as well. For example, to address the impacts of system quality
requirements on software, software engineering experts need to coordinate de-
sign decisions not only with systems engineering experts, but also with specialty
engineering experts. The examples illustrate the kinds of “close coupling” of
interrelated design decisions that can exist and thread across the system (hard-
ware, software, and specialty engineering domains). When any of the major dis-
ciplines have insufficient influence during early system design activities, interre-
lated design dependencies are often overlooked. Discovered later on in the life
cycle, addressing these dependencies becomes a major contributor to, at best,
cost and schedule overruns, at worst, delivery of reduced capability or a can-
celled program.

First Example – Project A
During development of a major satellite system (which was ultimately can-
celled), hardware was the focus during early system engineering and architectur-
al design activities. This hardware-centric approach resulted in an integrated
master schedule (IMS) in which software development tasks would not even be
planned until the hardware design was completed.

5 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

This is an extreme example of a project team following a system development
method that isolates and delays engagement of software domain experts. We
observed this type of approach as a significant source of high risk to cost and
schedule overruns. The program’s ability to meet technical requirements, many
of which relied on software to deliver functionality, was put in jeopardy as well.
In our judgment, had the program not been cancelled, the delayed planning of
software development activities would likely have uncovered insufficient sched-
ule time and staff remaining to meet key project delivery milestones.

Second Example – Project B
In this example, a software-reliant system under development includes heavy
concerns for safety. That is, the system includes certain “threads” of functional
operation provided mainly by software that, if failures occur, may result in seri-
ous human injury or even death.

Such systems typically incorporate regular “health and status monitoring”
(HSM) messages generated by various constituent software components
throughout the system. These HSM messages are proactively analyzed by soft-
ware specifically designed to report on a variety of potential and/or detected sys-
tem malfunctions. The intent is to identify problems in the system sufficiently
early so as to minimize the risk of harm to humans.

In this project, the SEIT’s functional decomposition efforts resulted in system
functionality allocated to hardware and software configuration items which in-
cluded a configuration item specifically for HSM functions. These configuration
items were assigned to various IPTs before the IPTs themselves were fully
formed and engaged in system development. In this large program, well over a
year of time had elapsed before software engineers, segregated and with time-
staggered starts across several product development IPTs, began independently
designing and implementing the details of HSM message formats and contents.

Nearly two years after various product development IPTs started their designs, it
was discovered that the HSM message designs were evolving inconsistently.
Safety domain experts found it difficult and time consuming to scrub through the
content of all the various HSM messages and message formats that were being
developed, to identify which specific data were to be deemed safety related.
Safety certifying authorities, external to the program, had to be convinced to ap-
prove the safety aspects of the system’s design. This task would be much harder
with a system software design that lacked consistent identification and represen-
tation of safety related information. Thus, redesign of HSM messages that car-
ried safety information had to be negotiated across IPTs, and software engineers
had to re-implement such messages.

6 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

This project illustrates a difficulty resulting directly from isolating and delaying
involvement of software engineering domain experts during early phases of sys-
tem design. We believe that early involvement in systems design by software
architects would have significantly improved chances to discover which key
software information structures, such as messages used by the HSM configura-
tion item, must be defined consistently across the system. This is an important
part of what software architects do; i.e., considering driving systems quality at-
tribute requirements such as safety, security, etc., software architects make the
“big software design decisions” that should not be delegated to downstream de-
velopers in individual IPTs. We believe such an approach would have averted
the schedule delays associated with the downstream negotiation and redesign of
HSM message content across the various IPTs

In addition to early inclusion of software domain experts, we believe a further
reduction in schedule risk could have been realized by early inclusion of special-
ty engineering experts in this project’s systems design activities. For example,
had safety engineers been involved in the up-front system design process, they
would have had earlier opportunities to identify safety related information within
software HSM messages. This would have enabled safety engineers to have
more time to build evidence for constructing safety cases to be made to certify-
ing authorities.

Third Example – Project C
In this project, a software-reliant system was being developed that involved a
control system and a physically separate vehicle system (e.g., a satellite, un-
manned air vehicle system, remotely controlled surface vehicle, etc.).

With these types of systems, it is crucial to collect and display information that
provides humans with “situational awareness” (SA) of the vehicle’s state and the
state of the surrounding environment. To achieve a harmonious assessment of a
vehicle’s SA, it is important that various humans interacting with the system un-
derstand the “common operating picture” (COP). Designing a software system
with a smooth integration of SA/COP information requires that software engi-
neers work closely with human factors (HF) specialty engineers.

In this case, once the individual software teams were formed within the IPTs,
each IPT synthesized its own notion of SA/COP functionality and related data.
When software engineers from each IPT subsequently began working with HF
specialty engineers, the HF engineers discovered difficulties in combining the
two distinct notions of SA/COP and related information into an integrated
SA/COP display. This discovery occurred many months into the design cycle,

7 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

requiring significant schedule delays to negotiate a harmonized SA/COP rede-
sign within each IPT.

System capabilities such as SA/COP that are largely implemented in software
often exhibit cross-cutting system-wide attributes and behavior that emerge and
become discernible only when the system is considered or integrated as a whole.
These attributes and behaviors belong to the overall system and thus are not in-
herent or allocable properties of any “piece” of the system.

Each IPT within this project determined it was responsible for the implementa-
tion of the SA/COP resulting in a belief that there was no reason to coordinate
with other IPTs. We believe that had the architecture significantly defined the
SA/COP, the IPTs would have understood the system context of the require-
ments and would not have constructed incompatible designs.

Fourth Example7 - Project D
In this section, we summarize an example of a commercial company whose pri-
mary business is the manufacture and worldwide sales of diesel engines. A quick
summary is that this company, Cummins Engine, is the world’s largest manufac-
turer of diesel engines of more than 50 horsepower.

The different variations of engines involved are staggering: they range in horse-
power from 50 to above 3,500, have from four to 18 cylinders, and operate with
a wide variety of fuel systems, air handling systems, and sensors. The engines
operate all over the world, requiring different operator interfaces and communi-
cations/datalink capabilities, and must be serviceable by vastly differing distribu-
tion and service infrastructures. The difficulty of managing such a breadth of
product variation levied additional complexities on Cummins’ already complex
software. To address the complexity, Cummins’ management elected to leverage
a software technology based on software product lines. Adoption of this technol-
ogy is accompanied by significant, company-wide commitment levels involving
culture, mindset and procedural changes. Among the key changes in this compa-
ny include having software architects involved with business managers and other
engineering experts during the initial conception of a new diesel engine model.

7 Content for this example taken directly from Chapter 9 of Software Product
Lines: Practices and Patterns. P. Clements and L. Northrop. Addison-Wesley,
2002.

8 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

When creating a new model of diesel engine, the earliest system architectural
decisions include the full participation of software domain experts.

Cummins pursued a course of action regarding its approach to software devel-
opment that is the opposite of treating software as just another specialty engi-
neering domain. In fact, this company recognized, in order to survive, it must
establish software as one of its key core business competencies. In the end,
Cummins acknowledged that it had essentially become a software company that
manufactures engines.

RECOMMENDATIONS
To help avert the types of difficulties described in the above examples, we com-
piled a list of recommended actions for acquisition programs of record to consid-
er adopting. The recommendations are arranged in an order that, in the authors’
opinions, will provide the greatest benefit when incorporated.

1. Employ a formal systems architecture team and associated process within
the government acquisition organization, whether the organization is at
the program level, center level, service level, or DoD/federal level. For
example, the organizational team and associated processes may include
coordination of architecture development across multiple acquisition pro-
grams.

2. When creating the program work breakdown structure (WBS), be cogni-
zant that you are levying architectural decisions which can/will constrain
potential contractors into an architectural structure. To mitigate the poten-
tial of encroaching on the dangerous territory of starting to design the sys-
tem within the WBS, designate an architecture team (i.e., enterprise level
or peer level) to review the WBS for acceptability of any constraining ar-
chitectural decisions. If an architectural review is not possible, the associ-
ated risk of omitting this step must be acknowledged, accepted, and doc-
umented.

3. Do not delegate important, key system characteristics to be decided or ne-
gotiated by downstream programs and/or product teams. Create and doc-
ument architectural principles, key architectural design decisions and as-
sociated rationale, guidance and constraints for subsequent consumption
by downstream programs and product teams. This will help to avert the
costs and delays often incurred when addressing late discovery of key ar-
chitectural drivers after significant design work has been done.

9 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

4. Physically and psychologically segregate the hardware from systems en-
gineering. To help achieve this:

a. Appoint a dedicated lead systems engineer

b. Appoint a dedicated lead hardware engineer

c. Appoint a dedicated lead software engineer

Each of these engineering domains has distinct concerns, unique
knowledge and practices. A lead engineer, as the primary point of contact
for each domain, will help ensure each domain receives appropriate focus.

5. Organize software and hardware disciplines to have the same reporting
chains as the systems engineering discipline.

6. Staff the architecture and software disciplines within the acquisition or-
ganization to accurately reflect the necessary skill levels, amount of work,
and domain complexity to support the system. Ensure ongoing architec-
ture and software training is implemented.

7. Ensure software and specialty engineering disciplines are key members of
the architecture teams.

8. Increase early emphasis on iterative system architecture and design activi-
ties that include domain representation from software architecture engi-
neering, specialty engineering and requirements engineering.

9. Have the architecture team along with the systems engineering discipline
take a larger role in oversight of the IPTs’ design efforts. Doing so im-
plements the systems architecture function as part of systems engineering
activities. The architecture team should establish the constraints that need
to be followed by all downstream IPTs.

10. Avoid segregating software and traditional specialty engineering effort
from the initial system architecture for purposes of reducing the initial
cost estimates. This approach often results in significant redesign work
with associated cost and schedule overruns.

11. Ensure strong architectural discipline from enterprise level down to indi-
vidual IPTs.

12. Consider an iterative development approach (i.e., build a little – integrate
a little – test a little). Small, iterative builds ensure an early integration of

10 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

software that reduces life-cycle software development and integration
risk. Caveat: investigate how your specific program milestones are suited
for agile-like development methods.

13. Ensure architecture is designed to promote future evolvability for integrat-
ing new software technologies as well as for integrating new capabilities
long past initial system deployment. Designing a system that can be readi-
ly evolved does not happen by accident. Software systems that provide
significant functionality typically need to endure within the operating en-
vironment many years after their initial deployment. At a minimum, an
architecture which enables replacement of obsolete software technologies
without causing major disruption to other parts of the system is crucial to
constraining a system’s full life-cycle costs. If such evolvable qualities are
not considered in the early phases of system design, large risks to full life-
cycle software costs will likely materialize as issues.

11 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

SUMMARY
Today’s complex systems, even with the most cutting-edge hardware, would not
properly function without successful and timely integration of software. As illus-
trated in the real program examples above, expertise from the software and spe-
cialty engineering disciplines may be delayed or completely overlooked during
the initial systems engineering and architecture design activities. This behavior
often results in systems that are late to enter system integration activities and/or
which are over budget. These systems, when initially deployed, typically operate
below expectations. Indeed, such systems may not meet their basic design re-
quirements while exceeding projected development costs.

In today’s environment of shrinking DOD budgets and cancelled programs,
software upgrades are being used more and more to keep systems viable and rel-
evant much longer than the systems’ original creators anticipated (sometimes on
the order of decades). It is thus essential that the upfront system and software
architecture be “right” to promote the ease of frequent enhancement and support
over the long term. Since the majority of a software-reliant system’s full life-
cycle expense is for creating and sustaining software,8,9 proper up-front de-
sign/architecture significantly affects the system’s total cost of ownership.

We recommend that any organization acquiring software-reliant systems should
strive to incorporate software, as well as traditional specialty engineering disci-
plines, as equal partners from the initial system design and architecture through
fielding. It is imperative that software and specialty engineering domains do not
miss their opportunity to have important positive influence on early system ar-
chitecture design decisions.

8 D. Galin. Software Quality Assurance: From Theory to Implementation. Pear-
son/Addison-Wesley, 2004.
9 U.S. Air Force Space and Missiles Systems Center (SMC). SMC Systems Engi-
neering Primer & Handbook: Concepts, Processes and Techniques, 3rd Edition,
April 2005 (page 147).

12 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

ACKNOWLEDGEMENTS
The authors express their appreciation for the valuable inputs, comments and
careful reading of draft versions of this document. Their insights have signifi-
cantly improved content and readability:

Greg D. Blank, Defense Contracts Management Agency

Peter Capell, Software Engineering Institute

Julie Cohen, Software Engineering Institute

John Foreman, Software Engineering Institute

Theodore Marz, Software Engineering Institute

John Robert, Software Engineering Institute

Jeffrey Thieret, Software Engineering Institute

Eileen Wrubel, Software Engineering Institute

13 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

APPENDIX
The following excerpt of “Issue 2” is taken from Top Software Engineering Is-
sues within Department of Defense and Defense Industry, NDIA Task Group
Report, September 2006. While this reference is slightly dated, we are still ob-
serving this exact issue in presently executing programs.

Issue 2:

Fundamental system engineering decisions are made without full
participation of software engineering.
The following main points provide amplification of this issue:

• Complex, distributed, interoperating systems and evolving software ca-
pabilities have permanently altered the system level trade space. Key ar-
chitectural decisions early in the system life cycle have great impact on
software capabilities, attributes, and architectural/design approaches, yet
the software engineering discipline is not consistently involved in these
decisions.

• Software engineering involves systems thinking as much as it does
technology. Software engineers need the knowledge, skills, and authori-
ty to fully participate in system-level decision-making from program on-
set; even conceptual trades require software expertise.

• System engineering and software engineering life cycles, processes, and
products are not always consistent or sufficiently harmonized for mean-
ingful cross-discipline participation to occur.

• Proposal guidelines can impede cross-discipline cooperation and coor-
dination by segregating SW and system activities and documents.

• In the planning phase, system development methods do not properly
leverage SW’s ability to rapidly field enhanced capabilities, a key need
in the evolving acquisition environment. Yet many programs end up re-
lying upon this ability during development and support phases.

14 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

15 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the United
States Department of Defense.

References herein to any specific commercial product, process, or service by trade
name, trade mark, manufacturer, or otherwise, does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0000749

16 | THE PERILS OF TREATING SOFTWARE AS A SPECIALTY ENGINEERING
DISCIPLINE

	The Perils of Treating Software as a Specialty Engineering Discipline
	Introduction
	Observations
	Exclusion of software disciplines
	Design decisions not coordinated
	Hardware equals system
	Emphasis on developing code
	Program success depends on software

	Some Examples
	First Example – Project A
	Second Example – Project B
	Third Example – Project C
	Fourth Example6F - Project D

	Recommendations
	Summary
	Acknowledgements
	APPENDIX
	Issue 2:
	Fundamental system engineering decisions are made without full participation of software engineering.

